微砂沉淀池是通过投加微砂、磁种等不溶性颗粒介质使污染物在高分子絮凝剂的作用下与微砂聚合成大颗粒的易于沉淀的絮体,从而加快了污染物在沉淀池中的沉淀速度,后端又采用了斜管沉淀,极大地减少了沉淀池的面积和沉淀时间,增加了出水效果。
原水或污水首先进入混凝池(通常是铝盐或铁盐)可以投加在混凝池入口或进水管路上,在搅拌器的作用下混合均匀,随后进入加有微砂和高分子絮凝剂的注射池。搅拌器的动态混合提高了混凝固体、高分子聚合物和微砂之间相互接触的可能性。絮凝后水进入熟化池,在该池的入口处也设有高分子絮凝剂的投加管路。熟化池中缓慢的混合过程促使絮体的熟化并使微砂成为新形成的絮体的核心,经过微砂加重絮凝后的絮体直径可达150μm以上随后,含砂的絮体在斜板澄清部分实现了沉淀,澄清水被集水槽收集,含有微砂的污泥底,由刮泥机收集至沉淀池底部中央的区域,被微砂循环泵按一定比例抽出,经循环管路至水力旋流器。由于微砂与污泥的比重差异,在水力旋流器内离心力的作用下,污泥与微砂分离。由于水力旋流器设置于注射池的顶部,下溢的微砂可以直接回用于注射池,而轻的污泥和大部分水一起向上移动以溢流形式排出水力旋流器外。
微砂沉淀池主要由混凝池、注射池、熟化池和沉淀池四部分组成:
混凝区:原水或污水首先进入混凝池,在混凝池中与混凝剂混合均匀。
注射池:注射池内投加微砂和高分子絮凝剂,通过搅拌器使混凝固体、高分子聚合物、微砂充分接触。
熟化池:该池内也增加絮凝剂的投加管路,使絮体形成一个以微砂为核心的絮体。
沉淀区:沉淀区采用斜管沉淀,含砂絮体经过充分熟化后,在沉淀池内充分沉淀,澄清水通过集水槽排出。含有微砂的污泥沉淀于池底,由刮泥机收集至沉淀池底部。
目前对于河道、煤洗、隧道等行业产生的污水目前采用磁分离、高密度沉淀池、斜管沉淀池、微砂沉淀池等工艺。这些工艺都具有高效的去SS、浊度以及颗粒态有机物的功能。可以根据水量大小、水质情况择优选择使用工艺。